На правах рукописи

Крутов Александр Федорович

РЕЛЕЯТИВИСТСКОЕ ОПИСАНИЕ ЭЛЕКТРОСЛАБОЙ СТРУКТУРЫ СОСТАВНЫХ СИСТЕМ

01.04.16 – физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени доктора физико–математических наук

Москва 2003
Работа выполнена в Самарском государственном университете.

Официальные оппоненты:
доктор физико-математических наук
Боос Эдуард Эристович (НИИЯФ МГУ им. Д.В.Скобельцына);
доктор физико-математических наук
Карманов Владимир Аристархович (ФИАН им. П.Н.Лебедева);
доктор физико-математических наук, профессор
Фаустов Рудольф Николаевич (Научный совет по кибернетике РАН).

Ведущая организация:
Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н.Н.Боголюбова, г. Дубна.

Защита состоится "23" января 2004 г. в 15 час. на заседании диссертационного совета Д 501.001.77 при Московском государственном университете им. М.В.Ломоносова (119992, г. Москва, Ленинские горы, НИИЯФ МГУ, корп. 19, ауд. 2–15).

С диссертацией можно ознакомиться в библиотеке Научно-исследовательского института ядерной физики им. Д.В.Скобельцына МГУ им. М.В.Ломоносова.

Автореферат разослан "19" декабря 2003 г.

Ученый секретарь
диссертационного совета
профессор С.И.Страхова
Общая характеристика и актуальность работы

В связи с тем, что составные системы очень широко распространены в микромире, роль корректных методов количественного описания их электрослабой структуры является очень важной. В нерелятивистской динамике имеются достаточно надежные методы численного расчета характеристик составных систем. Однако для описания процессов, протекающих при больших энергиях, необходимо развитие релятивистских подходов. Необходимо также помнить, что достигнутые на сегодняшний день в экспериментальных исследованиях на ускорителях точности требуют от теоретического описания даже таких, казалось бы, традиционно нерелятивистских систем как дейтрон, количественного учета релятивистских эффектов. Кроме того, расчеты составных систем, содержащих легкие кварки, также обязательно требует учета релятивизма. Следует подчеркнуть, что применение методов теории поля для решения проблемы релятивистского описания сталкивается с серьезными трудностями. Так, например, известно, что пертurbативная КХД не может быть применена для количественных расчетов связанных состояний кварков.

Одним из подходов, позволяющих описывать электрослабые свойства составных систем релятивистским образом, является релятивистская составная модель (РСМ). РСМ может быть сформулирована различным образом. Существуют формулировки, опирающиеся на квантовую теорию поля (КТП), например, подходы основанные на уравнении Бете–Соллитера и на различных квазипотенциальных редукциях этого уравнения. В настоящее время получили также широкое распространение альтернативные к квантовополевым формулировки составной модели – релятивистские гамильтоновы динамики (РГД), один из вариантов которых предложен и развивается в настоящей диссертации.

Фундаментальным отличием релятивистской составной модели от теории поля является описание составных систем в терминах выбранного конечного числа степеней свободы ab initio.

Условия релятивистской инвариантности формулируются в РГД как
условия реализации алгебры группы Пуанкаре на множестве динамических наблюдаемых систем конечного числа взаимодействующих част. Математический аппарат РГД близок к нерелятивистской квантовой механике, допускает возможность ассимиляции развитых методов феноменологических модельных гамильтонианов и легко может быть обобщен на случай трех и более частиц.

Изучение электрослабых свойств составных ядерных и кварковых систем занимает существенную часть различных экспериментальных программ на современных ускорителях. Отметим среди них, например, ускоритель в Джефферсонской лаборатории (JLab1), на котором уже осуществляются программы по упругому электрон–дейтронному рассеянию, по прецизионному измерению пионного и каонного формфакторов, а также по измерению нуклонных формфакторов. Важную роль сыграли в последние годы эксперименты по измерению электрослабых характеристик тяжелых мезонов коллаборациями на ускорителе LEP, коллаборациями OPAL, CLEO и др.

Теоретическое описание электрослабых свойств составных систем в релятивистской составной модели встречает одну общую для всех подходов проблему. Это – проблема построения оператора электрослабого тока с учетом условий релятивисткой ковариантности оператора и законов сохранения. Вообще говоря, сложности с построением оператора тока составной системы, удовлетворяющего условиям лоренц-ковариантности и сохранения, возникают во всех подходах, в том числе и в пертурбативной квантовой теории поля.

Проявлением такого рода трудностей в составных моделях является, например, неоднозначность при вычислении формфакторов составных систем с полным моментом количества движения отличным от нуля (дейтрон, ρ – мезон) из матричных элементов тока в широко распространеной в настоящее время динамики на световом фронте. Известно

1Прежнее название – CEBAF
также, что такое естественное и широко используемое приближение для составных моделей как импульсное приближение (ИП) приводит во всех подходах к нарушению закона сохранения электромагнитного тока.

Для обеспечения закона сохранения в рамках уравнения Бете-Солитера и квазипотенциальных уравнений необходим выход за рамки ИП, т.е. в оператор тока необходимо добавить так называемые двухчастичные токи (или токи взаимодействия), которые при описании составных нуклонных систем интерпретируются как обменные мезонные токи. Таким образом, проблема построения сохраняющегося тока решается, путем включения дополнительных динамических механизмов взаимодействия.

Существует однако возможность решения этой задачи на пути обобщения известной теоремы Вигнера-Эккарта на группу Пуанкаре. Она позволила бы производить разложение матричных элементов электро-слабых токов на приведенные матричные элементы инвариантные относительно преобразований Пуанкаре (формфакторы), содержащие всю информацию о динамике процесса, и ковариантную часть, описывающую трансформационные свойства тока и законы сохранения. Физические приближения подобные ИП должны формулироваться при этом на языке приведенных матричных элементов. Такой подход предложен и развивается в настоящей диссертации.

В РСМ в существует проблема установления связи с пространственно-временной картиной описания микромира – квантовой теорией поля. В настоящее время эта проблема в теории сильных взаимодействий далека от своего решения. Пока не удается объяснить с точки зрения КТП большую эффективность РСМ при описании составных кварковых и нуклонных систем. В диссертации предложен способ установления такого рода связей между РСМ и КТП. Сформулированный в диссертации вариант РСМ оказывается тесно связанным с дисперсионным подходом, строго обоснованным в КТП по крайней мере для систем частиц, которые могут находиться в состоянии рассеяния.

Среди составных кварковых систем особый интерес вызывает описание электрослабых свойств легких мезонов – пиона и каона. Связано это с существующей обширной экспериментальной информацией об этих частицах, кроме того, на ускорителе JLab в настоящее время осуществляется экспериментальная программа по прецизионному измере-
нико зарядовых формфакторов этих частиц в области передач импульса до 3 ГэВ^2 (E=93–021 и E=93–018). Относительно пиона этот интерес вызван еще и двойностью пиона как составной системы и как возможного кандидата на роль гольдстоуновского бозона спонтанно нарушенной ки-
ральной симметрии КХД. В рамках развитого формализма в диссерта-
ции производится вычисление электрослабых свойств легких мезонов.

В РГД как и вообще в релятивистской составной модели конститу-
енты, составляющие систему, рассматриваются как протяженные объ-
екты, структура которых описывается введением среднеквадратичного
радиуса, аномальных магнитных моментов, формфакторов конститу-
ентов. Конституенты взаимодействуют между собой посредством по-
тенциала, параметры которого определяются феноменологически. Для
составной кварковой модели актуальной проблемой является пробле-
ма независимого от модели взаимодействия кварков определения пара-
метров конституентов. В диссертации производится оценка параметров
конституентных кварков на основании экспериментальных данных по
зарядовому формфактору пиона.

С точки зрения установления связи между РСМ и КТП несомнен-
ный интерес представляет сравнение предсказаний составной кварковой
модели и предсказаниями Стандартной модели, в частности, например,
сравнение предсказаний асимптотического поведения формфакторов со-
ставных кварковых систем с предсказаниями кваркового счета и КХД.
Такого рода расчеты проводятся в диссертации при вычислении асимп-
тотического поведения пионного формфактора.

Очень большое внимание в последние годы уделяется изучению ме-
зонов, содержащих один тяжелый кварк. Связано это с тем, что такие
системы можно описывать в рамках теории возмущений по обратной
массе тяжелого кварка – эффективной теории тяжелых кварков. Однако
вычисление, например, универсальной функции Исура–Вайзе требует
тем не менее непертурбативных подходов. Отметим, что в последние
время экспериментальными коллаборациями ускорителя LEP и колла-
бorationшей CLEO произведено измерение величины наклона этой фун-
кции, которая является весьма критичной к теоретическим моделям и
может дать возможность выбора наиболее адекватной из них. В диссер-
тации получено модельно независимое ограничение на наклон функции
Исура–Вайзе.
Процессы с участием тяжелых мезонов служат одним из важных источников информации об основных параметрах Стандартной модели, например, о матричных элементах Каббио–Кобаяши–Маскауи. Для извлечения их, например, из ширин лептонных распадов тяжелых мезонов необходимо точное знание величин соответствующих распадных констант. Однако результаты расчетов этих констант в решеточных подходах и в правилах сумм КХД, как правило, имеют большие теоретические неопределенностей и сильно отличаются друг от друга. Поэтому формулировка новых подходов и выполнение более точных расчетов констант лептонных распадов является актуальной задачей. В диссертации проводится релятивистский расчет констант лептонных распадов мезонов, содержащих один тяжелый кварк.

Уже долгое годы простейшая составная ядерная система — дейтрон является объектом интенсивных исследований. В последние несколько лет интерес к нему резко возрос в связи со значительным продвижением в проведении поляризационных экспериментов в упругом электрон–дейтронном рассеянии главным образом на ускорителе JLab. Поэтому актуальным в настоящее время является релятивистский расчет статических моментов, электромагнитных формфакторов, а также компоненты тензора поляризации дейтрона в электрон–дейтронном рассеянии. Сравнение с новыми более точными экспериментальными данными обещает возможность выбора наиболее адекватных моделей NN–взаимодействия. Эти расчеты имеют еще и то значение, что дейтрон является одним из немногих источников информации о электрическом нейтронном формфакторе. В диссертации проводится вычисление электромагнитных характеристик дейтрона, а также извлечение информации о зарядовом формфакторе нейтрона из данных о зарядовом формфакторе дейтрона.

Итак, в диссертации в рамках РГД формулируется подход, позволяющий решить ряд актуальных проблем релятивистской теории составных систем.

Целью диссертации является развитие нового метода релятивистского описания электрослабой структуры составных систем и расчет на его основе электрослабых свойств составных кварк–ант кварковых систем — мезонов и нуклон–нуклонной составной системы — дейтрона.
Научная новизна и практическая значимость диссертации состоят в том, что в ней предложен новый метод описания электрослабой структуры составных систем в рамках одной из возможных формулировок составной кварковой модели — мгновенной формы релятивистской гамильтоновой динамики. В качестве ядра этого подхода следует отметить новую процедуру построения матричных элементов операторов электрослабых токов, которая является, фактически, реализацией теоремы Витгера-Эккарта на группе Пуанкаре. Эта процедура позволяет построить матричный элемент оператора с учетом условий релятивистской ковариантности и законов сохранения даже в импульсном приближении. Развитый подход используется для описания электрослабой структуры конкретных составных систем — мезонов как кварк-антикварковых систем и дейтрона как составной нуклонной системы. В рамках этого подхода был получен ряд новых результатов, из которых в первую очередь следует отметить получение модельно независимых оценок параметров легких конституентных кварков, получение модельно независимого ограничения сверху и снизу на наклон функции Исура–Вайзе, расчет констант лептонного распада мезонов, содержащих один тяжелый кварк, расчет зарядового формфактора нейтрона из экспериментальных данных по зарядовому формфактору дейтрона.

Апробация работы

Личный вклад диссертанта в работы, выполненные в соавторстве, является определяющим.

Содержание работы

Диссертация состоит из введения, шести глав, заключения и приложений, ее объем составляет 230 страниц, она содержит 7 таблиц, 40 рисунков и список литературы из 320 наименований.

Во введении дан краткий обзор современных проблем различных формулировок релятивистской составной модели, обсуждаются возможные пути их решения, формулируются цели работы и дается краткое характеристика ее содержания.

В первой главе на примере простой двухчастичной системы обсуждаются принципиальные моменты развиваемого в диссертации подхода к описанию электрослабых свойств составных систем. В подразделе 1.1 проводится краткое описание мгновенной формы релятивистской гамильтоновой динамики (РГД) как одного из возможных релятивистских обобщений составной модели. РГД основана на реализации неприводимого представления группы $SL(2, C)$, которая является универсальной накрывающей группы Пуанкаре, на гильбертовом пространстве состояний составной системы с конечным числом степеней свободы. Обсуждается, каким образом введение взаимодействия в такую систему деформирует алгебру Пуанкаре, реализованную на множестве наблюдаемых. Проводится соответствующее сравнение с системой, для которой группой инвариантности является группа Галилея. В отличие от единственной возможной динамики в нерелятивизме в релятивистском случае может быть реализовано пять различных видов динамики, среди которых в настоящее время используются три — динамика на световом фронте, точечная форма динамики и мгновенная
форма динамики. Волновая функция системы в смысле РГД строится как решение задачи на собственные значения для полного коммутирующего набора операторов. В подразделе 1.2 рассматривается система из двух частиц, находящихся в S-состоянии относительного движения. Одна из частиц является незаряженной. Сначала рассматривается случай свободных частиц. Приводятся общие требования к операту электромагнитного тока составной системы. К матричному элементу электромагнитного тока в базисе с отделенным движением центра инерции применяется теорема Вигнера–Эккарта для группы Пуанкаре. Показано, что приведенный матричный элемент (или инвариантный формфактор), содержащий всю динамическую информацию о рассеянии зондовой частицы (например, электрона) на рассматриваемой системе, является регулярной обобщенной функцией, заданной функционалом на некотором пространстве основных функций. Например, статический предел формфактора при $Q^2 \to 0$ ($Q^2 = -q^2$, q – переданный импульс), задающий заряд системы, должен рассматриваться как сла́бы́й предел. Далее в рассмотрение включается взаимодействие. Применяя теорему Вигнера–Эккарта для обобщенной функции (или в слабом смысле) мы получаем интегральное представление для электромагнитного формфактора рассматриваемой системы, который является функционалом на пространстве волновых функций системы, порождающим регулярную лоренци-инвариантную обобщенную функцию. Обсуждается общая структура формфактора как обобщенной функции. Показано, что построенный матричный элемент удовлетворяет общим условиям, следующим из условий на оператор тока. В подразделе 1.3 обсуждается импульсное приближение и его формулировка в развитом формализме. Формулировка импульсного приближения, предложенная в диссертации, сформулирована на языке формфакторов (приведенных матричных элементах группы Пуанкаре), которые являются обобщенными функциями и названы модифицированным импульсным приближением (МИП). Оно заключается в замене лоренци-инвариантной обобщенной функции, задающей формфактор составной системы, так называемым свободным двухчастичным формфактором, описывающим систему двух частиц без взаимодействия. Как известно, общепринятое импульсное приближение (ИП) нарушает релятивистскую ковариантность и закон сохранения для электромагнитного тока. Показано, что модифициро-
ванное импульсное приближение не нарушает этих условий. Обсуждается роль двухчастичных токов в общепринятом и модифицированном импульсном приближении. Производится сравнение формфакторов составной системы, вычисленных в ИП и МИП. В подразделе 1.4 рассматривается нерелятивистский предел формфактора составной системы. Получено, что нерелятивистский предел совпадает с известными стандартными формулами для формфактора в нерелятивистском импульсном приближении. Таким образом, разрабатываемый в диссертации формализм, оперирующий с формфакторами – обобщенными функциями, можно рассматривать как релятивистское обобщение уже имеющегося нерелятивистского формализма. Показано, что разница между модифицированным и общепринятым импульсными приближениями связана с условиями релятивистской инвариантности. В подразделе 1.5 рассмотрен важный вопрос о связи релятивистских динамик с квантовополевой картиной описания взаимодействия частиц. Показано, что формула для формфактора рассматриваемой простой модели фактически совпадает с соответствующими формулами, полученными в дисперсионном подходе, развитом в 70-ые годы В.Е.Троицким и Ю.М.Широковым. Этот дисперсионный подход для составных систем, имеющих состояния рассеяния, строго обоснован в квантовой теории поля. Таким образом, дисперсионные расчеты могут служить мостиком, соединяющим релятивистскую составную модель с квантовой теорией поля по крайней мере в применении к системам, имеющим состояния рассеяния. В шестом подразделе описывается новый метод решения матричной краевой задачи Римана–Гильберта для вычисления матрицы Йоста двухканального рассеяния через фазы рассеяния и параметр смешивания. Разработанный метод работает при минимальных ограничениях на фазы и параметры смешивания: единственным требованием является рациональное представление для тангенса параметра смешивания. Метод может быть использован, например, для вычисления волновых функций связанного состояния нейтрон–протонной системы в $^3S_1–^3D_1$ -канале (нейтронные волновые функции) в обратной задаче рассеяния.

Вторая глава является центральной в диссертации. В ней излагаются общий метод выделения приведенных матричных элементов (или формфакторов) из матричных элементов локальных операторов, которые являются лоренц–векторами, и описывают переходы в системах с
произвольным спином. Таким образом, в данной главе описывается ре-
ализация теоремы Вигнера–Эккарта для группы Пуанкаре. Математи-
ческим аппаратом для реализации разложения типа Вигнера–Эккарта
является общий метод параметризации матричных элементов локаль-
ных операторов, предложенный А.А.Чешковым и Ю.М.Широковым и
развивший В.Е.Троицким.

Задача ставится следующим образом. Пусть дан оператор любой
тензорной размерности (лоренц–скаляр, лоренц–вектор, лоренц–тензор),
являющийся неприводимым тензорным оператором на группе Пуанка-
ре. Матричный элемент этого оператора берется между состояниями с
произвольным спином. Требуется произвести разложение этого опера-
тора на некоторое число приведенных матричных элементов, описыва-
ющих динамику перехода, которые обычно называются формфактора-
ми. При этом из матричного элемента выделяется ковариантная часть,
описывающая трансформационные (геометрические) свойства операто-
ра, законы сохранения и т.д. Развитый метод может быть использован
для построения матричных элементов электрослоабых токов для систем
с произвольным спином.

В подразделе 2.1 производится постановка задачи, а также кратко
намечаются пути ее решения. В подразделе 2.2 излагается общий метод
параметризации матричных элементов локальных одночастичных опе-
раторов. Сначала рассматривается скалярный оператор $A(0)$, взятый
между состояниями частицы с нулевым спином. В данном случае про-
цедура выделения приведенного матричного элемента является триви-
альной, т.к. весь этот матричный элемент является приведенным, т.е.
равен формфактору. Далее рассматривается матричный элемент ска-
лярного оператора между состояниями частицы со спином j. В этом
случае матричный элемент оператора представляет собой матрицу по
проекциям спина частицы m', m. Задача, таким образом, сводится к
разложению матричного элемента оператора $A(0)$ по набору линейно
независимых матриц размерности $(2j + 1) \times (2j + 1)$, которые являются
лоренц–скалярами. Соответствующий набор матриц имеет следующий
вид:

$$D^j(p, p') [p_\mu \Gamma^\nu(p')]^n, \quad n = 0, 1, 2, \ldots 2j.$$ (1)

Здесь $p', p – 4$–импульсы частицы в начальном и конечном состояниях,
$D^j(p, p')$ – матрица трехмерного поворота, реализующая представление малой группы на пространстве состояний частицы со спином j; $\Gamma^\mu(p)$ – 4-вектор спина, явный вид которого может быть получен из трансформационных свойств матричных элементов оператора Любанского–Паули.

Структура выражения (1) может быть понята из следующих рассуждений. Скалярное произведение $p_\mu \Gamma^\mu(p')$ будет 4-скалярном между состояниями с одинаковым импульсом $|\vec{p}', m\rangle$ и $|\vec{p}, m\rangle$. Для матричных элементов не диагональных по импульсам, как это имеет место в нашей задаче, построенное скалярное произведение не будет 4-скаляром. Для того, чтобы $p_\mu \Gamma^\mu(p')$ был скаляром и в не диагональном случае, необходимо подействовать на него оператором поворота $D^j(p, p')$, реализующем представление малой группы на пространстве состояний частицы со спином j. Легко получить, что матрица $D^j(p, p') p_\mu \Gamma^\mu(p')$ между состояниями $|\vec{p}', m\rangle$ и $|\vec{p}, m\rangle$ будет 4-скаляром.

Таким образом, матричный элемент скалярного оператора между состояниями частицы со спином j может быть разложен по построенному набору линейно независимых матриц. Коэффициенты этого разложения и будут искомыми приведенными матричными элементами или формфакторами. Как видно, число формфакторов в случае спина j будет равно $2j + 1$. Данное разложение будет разложением типа Вигнера–Эккарта для группы Пуанкаре.

При параметризации матричного элемента векторного оператора (например, оператора электромагнитного тока) каждая из построенных в предыдущем пункте линейно независимых матриц умножается на набор линейно независимых 4-векторов, построенных из переменных, от которых зависят векторы состояний обкладок. В качестве таких векторов можно выбрать три вектора и один псевдовектор:

$$K_\mu = (p - p')_\mu , \quad K'_\mu = (p' + p)_\mu , \quad R_\mu = \epsilon_{\mu\nu\lambda\rho} p^\nu p^{\lambda\rho} \Gamma^\rho(p') , \quad \Gamma_\mu(p) , \quad (2)$$

где $\epsilon_{\mu\nu\lambda\rho}$ – абсолютно антисимметричный тензор четвертого ранга.

Коэффициенты построенного разложения и образуют искомый набор формфакторов, определяющих динамику перехода, описываемого оператором. Набор построенных 4-векторов (2) определяет трансформационные свойства оператора как 4-вектора, т.е. условия лоренц–ко-вариантности, а также обеспечивает выполнение дополнительных усло-
вий, накладываемых на ток, например, законов сохранения. В качестве примера рассмотрена параметризация матричного элемента электромагнитного тока частицы спина 1/2. Показано, как полученные в результате такой параметризации формфакторы связаны со стандартными формфакторами Паули–Дирака и Сакса для такой частицы.

Подраздел 2.3 посвящен описанию обобщения развитого в предыдущем параграфе метода параметризации матричных элементов локальных операторов на случай системы двух свободных частиц. Состояние такой системы может быть описано может быть описано в различных базисах. Во–первых, это базис индивидуальных импульсов и спинов частиц:

\[
|\vec{p}_1, m_1; \vec{p}_2, m_2\rangle = |\vec{p}_1, m_1\rangle \otimes |\vec{p}_2, m_2\rangle,
\]

\[
\langle \vec{p}', m | \vec{p}', m' \rangle = 2p_0 \delta(\vec{p} - \vec{p}') \delta_{mm'}.
\]

Во–вторых, такую систему можно описать в базисе с отдельным движением инерции:

\[
|\vec{P}, \sqrt{s}, J, l, S, m_J\rangle .
\]

Здесь \(P = (p_1 + p_2) \) — полный 4–импульс системы, \(P^2 = s , \sqrt{s} \) — инвариантная масса системы невзаимодействующих частиц, \(J \) — полный угловой момент, \(l \) — орбитальный момент, \(S \) — полный спин, \(m_J \) — проекция полного момента. Величины \(l, S \) строятся как инвариантные параметры вырождения.

Эти два базиса связаны между собой разложением Клебша–Гордана для группы Пуанкаре. В случае использования первого базиса оператор двухчастичного тока представлям в виде:

\[
j^{(1,2)}_\mu = I^{(1)} \otimes j^{(2)}_\mu + j^{(1)} \otimes I^{(2)}_\mu,
\]

где \(I^{(i)} \) — единичные операторы, действующие в пространстве состояний первой или второй частицы, \(j^{(i)}_\mu \) — соответствующие операторы одночастичных токов. Таким образом, задача сводится к параметризации одночастичных токов, решенной в предыдущем параграфе.

Задача однако состоит в параметризации матричного элемента двухчастичного тока во втором базисе. Эту параметризацию можно провести по аналогии с одночастичной параметризацией предыдущего параграфа.
Особенностью такой параметризации является то, что инвариантные формфакторы будут зависеть не только от квадрата переданного импульса, как в одночастичном случае, но и от других ненулевых инвариантных переменных — инвариантных масс, а также от определенных инвариантным образом орбитальных моментов и суммарных спинов начального и конечного состояний двухчастичной системы.

Другой особенностью является то, что наложение дополнительных условий на оператор, например, условий самосопряженности или инвариантности относительно временных отражений приводит к некоторым ограничениям на формфакторы. Например, требование самосопряженности приводит к требованию симметричности формфакторов относительно своих переменных.

Главной же особенностью этого описания является тот факт, что полученные формфакторы должны интерпретироваться как общенные функции. Это видно, например, из того факта, что обычный статистический предел этих формфакторов в сильном смысле (т.е. как поточечный предел) равен нулю. Чтобы получить соответствующие формфакторам статистические моменты системы (заряд, магнитный момент, квадрупольный момент) необходим слабый предел, т.е. предел регулярного функционала, порожденного формфакторами на некотором пространстве основных функций.

Составные системы со взаимодействием рассматриваются в подразделе 2.4. Матричные элементы операторов могут быть выражены через некоторое количество формфакторов методами, описанными выше. Задача состоит в том, чтобы выразить эти формфакторы через волновые функции составной системы при соблюдении условий лоренц-ковариантности и законов сохранения.

При описании составной системы из двух взаимодействующих конституентов в рамках РГД используется один из постулатов РГД, что векторы состояния такой системы принадлежат прямому произведению двух одночастичных гильбертовых пространств. Это означает, что в качестве базиса при описании двухчастичной системы со взаимодействием может служить базис с отдельным движением центра масс (3). Введение такого базиса позволяет построить волновые функции в смысле РГД, однако при построении матричного элемента оператора тока в этом базисе возникают трудности. Дело в том, что при построении
матричных элементов, описанных в подразделах 2.2 и 2.3 оператор тока и обкладки преобразуются по одному и тому же представлению группы Пуанкаре. При построении же матричного элемента оператора для системы со взаимодействием в обкладках из векторов (3) оператор и обкладки преобразуются по разным представлениям группы Пуанкаре. В этом случае методы развитые в предыдущих двух подразделах впрямую неприменимы. Чтобы обойти эту трудность, необходимо рассматривать матричный элемент оператора в этих обкладках как лоренц-ковariantную обобщенную функцию. В этом случае удаётся ввести систему лоренц-инвариантных матриц по проекциям полного момента количества движения, как это делалось в 2.2. Явный вид 4-векторов, описывающих трансформационные свойства матричного элемента, получаются из условия равенства двух функционалов при варьировании основных функций, на которых эти функционалы определены. Формфакторы составной системы имеют в этом случае вид функционалов, порожденных некоторыми лоренц-инвариантными обобщенными функциями на пространстве волновых функций составной системы:

$$f_{in}^{c}(Q^2) = \sum_{l,l',s,s'} \int_{M_1+M_2} d\sqrt{s} d\sqrt{s'} \varphi_{ls}^{l's'}(s) G_{in}^{l's's'}(s, Q^2, s') \varphi_{ls'}^{l's'}(s') .$$

(5)

В формуле (5) $f_{in}^{c}(Q^2)$ — один из формфакторов составной двухчастичной системы, l, l', S, S' — орбитальные моменты и полные спины двухчастичной системы в конечном и начальном состояниях, $\varphi_{ls}^{l's'}(s)$ — волновая функция системы в смысле РГД, $G_{in}^{l's's'}(s, Q^2, s')$ — лоренц-инвариантная обобщенная функция, \sqrt{s} — инвариантная масса свободной двухчастичной системы, $Q^2 = -q^2$, q — переданный импульс.

Таким образом, в диссертации предложен некоторый новый формализм для описания электростатической структуры составных систем, обеспечивающий выполнение условий релятивистской инвариантности и законов сохранения при описании составных систем. Это формализм проверяется на примере описания конкретных физических систем. Этому посвящены следующие главы диссертации.

Далее в этом подразделе производится параметризация матричного элемента электромагнитного тока для составной системы с набором квантовых чисел $J = J' = S = S' = 1$.

Третья глава посвящена описанию в развитом формализме элек-
трослабых свойств легких псевдоскалярных мезонов — пиона и каона. Выбор этих систем объясняется тем, что они очень хорошо изучены экспериментально, для них достаточно точно измерены среднеквадратичные радиусы, константы лептонных распадов, формфакторы полу- лептонного распада $K \rightarrow \pi + l + \bar{v}_l$ при малых переданных импульсах. Электромагнитный формфактор пиона измерен до квадратов передач импульса $Q^2 \sim 10$ ГэВ2. Кроме того, в настоящее время выполняется программа более точного измерения этого формфактора на ускорителе JLab. В подразделе 3.1 производится краткий обзор существующих подходов к расчетам электрослабых свойств легких псевдоскалярных мезонов, а также экспериментальных данных, в частности, полученных в последние экспериментах JLab. В подразделе 3.2 в рамках развитого в предыдущих главах формализма производится релативистский расчет электромагнитных свойств легких псевдоскалярных мезонов. Зарядовый формфактор псевдоскалярного мезона в МИП может быть получен из интегрального представления (5):

$$F_P(Q^2) = \int d\sqrt{s} d\sqrt{s'} \varphi(s) g_0(s, Q^2, s') \varphi(s').$$

(6)

Свободный двухчастичный формфактор $g_0(s, Q^2, s')$, описывающий систему двух свободных частиц спина $1/2$ с квантовыми числами $J = S = l = 0$ вычислен в подразделе 2.3.

Для расчетов по формуле (6) используются различные модельные волновые функции кварков в мезонах. Исследуется роль релативистских эффектов в электромагнитной структуре легких мезонов, в частности, релативистские эффекты в среднеквадратическом радиусе (СКР) пиона. Получено, что релативистские эффекты дают достаточно большой вклад в СКР. Например, вклад релативистского эффекта поворота спина в СКР достигает 30%. В приближении точности кварков рассчитаны электромагнитные формфакторы пиона и каона при $Q^2 \leq 6$ ГэВ2. Произведена оценка роли вклада вигнеровского поворота спинов в электромагнитный формфактор пиона. Проведен расчет электромагнитных формфакторов легких мезонов с учетом внутренней структуры конституентных кварков — аномальных магнитных моментов кварков, СКР кварков, электромагнитных формфакторов кварков. Аномальные магнитные моменты конституентных кварков в этих расчетах брались из правил сумм С.В. Герасимова. На примере расчета
пионного формфактора произведено сравнение результатов модифицированного импульсного приближения, развитого в диссертации, и импульсного приближения в обычной формулировке. Получено, что результаты отличаются почти в два раза при $Q^2 \simeq 1 \text{ ГэВ}^2$.

Подраздел 3.3 посвящен расчету лептонных распадов легких псевдоскалярных мезонов. На основании развитого в главах 1 и 2 формализма для констант лептонного распада псевдоскалярных мезонов выведено интегральное представление, которое в полне аналогично представлению (5):

$$f_c = \int d\sqrt{s} G_0(s) \varphi(s).$$

(7)

В равенстве (7) f_c – константа лептонного распада, $\varphi(s)$ – волновая функция в смысле РГД, $G_0(s)$ – инвариантная функция, описывающая лептонный распад двухчастичной кварковой системы без взаимодействия с квартонными числами мезона.

Далее в подразделе показано, что расчет констант лептонного распада пионов и каона в развитом подходе дает хорошее согласие с экспериментами по лептонным распадам и хорошо согласуется с расчетами электромагнитных свойств этих мезонов с учетом внутренней структуры конституентных кварков.

В подразделе 3.4 производится расчет полулептонных распадов псевдоскалярных мезонов. С использованием развитого в главах 1 и 2 релятивистского формализма получены интегральные представления для формфакторов полулептонных распадов аналогичные представлениям (5) и (7):

$$F_{\pm}(t) = \int d\sqrt{s} d\sqrt{s'} \varphi_c(k(s)) G_{\pm}^{(0)}(s, t, s') \varphi_{c'}(k(s')) ,$$

(8)

где $\varphi_c(k(s))$ – волновая функция кварков в мезоне, $G_{\pm}^{(0)}(s, t, s')$ – свободный двухчастичный формфактор, описывающий полуlepтонный распад системы невзаимодействующих частиц, вычисляемый методами релятивистской кинематики в данном подразделе, $t = -Q^2$.

Производится расчет полулептонного распада каона в пион. Рассчитанные наклоны этих формфакторов в нуле совпадают в пределах экспериментальных ошибок с имеющимися экспериментальными данными. Результаты расчетов хорошо согласуются с выполненными в подразделах 3.2 и 3.3 главы 3 расчетами электромагнитных формфакторов.
легких псевдоскалярных мезонов с учетом внутренней структуры конституентов и констант лептонного распада.

В подразделе 3.5 производится оценка асимптотики полученного в диссертации формфактора пионов при $Q^2 \to \infty$. Поскольку в этом пределе конституентные кварки должны переходить в токовые, то этот предел рассматривается совместно с предельным переходом для массы конституентного кварка $M \to 0$. Получено, что при таком предельном переходе асимптотика формфактора пионов не зависит от вида волновых функций пионов и в приближении точечности кварков в ведущем члене совпадает с асимптотикой, полученной в размерном кварковом счете и КХД:

$$F_\pi(Q^2) \sim Q^{-2}.$$

Показано, что этот результат является следствием релятивистских эффектов и определяется, в частности, релятивистскими эффектами поворота спина. Этот результат накладывает жесткие ограничения на формфактор конституентного кварка: при больших передачах импульса он должен убывать логарифмическим образом. Таким образом, можно установить простой функциональный вид кваркового формфактора, содержащего один параметр — среднеквадратичный радиус кварка.

Подраздел 3.6 посвящен моделю независимому определению параметров конституентных кварков из данных по электромагнитному формфактору пионов при средних и больших значениях переданных импульсов и по данным о константе лептонного распада пионов. Оказалось, что фиксация параметров конституентных кварков (среднеквадратичного радиуса, суммы аномальных магнитных моментов кварков) из условия описания среднеквадратичного радиуса пионов и константы лептонного распада пионов приводит к слабой модельной зависимости формфактора пионов и достаточно сильной зависимости этой величины от массы конституентного кварка. Расчет производился для трех различных волновых функций пионов. При уменьшении экспериментальных погрешностей для пионного формфактора может быть получено строгое ограничение на массу легкого кварка в нашем подходе. Последние экспериментальные данные JLab по пионному формфактору дают наиболее вероятное значение массы $M \approx 0.21$ ГэВ. После определения массы конституентного кварка может быть оценена и сумма аномальн-
ных магнитных моментов u– и d– кварков. Массу конституентного s–кварка можно вычислить из модельно независимой оценки параметра нарушения $SU(3)$–симметрии. Эта оценка дает массу s–кварка равной примерно 0.35 ГэВ.

В четвертой главе производится описание электрослабой структуры мезонов, содержащих один тяжелый кварк. Подраздел 4.1 посвящен сжатому описанию современного состояния теории составных систем, содержащих один тяжелый кварк. Кратко излагаются основные выводы эффективной теории тяжелых кварков при описании таких систем, следующие из дополнительных спин–ароматических симметрий, появляющихся в этой теории. Вводится понятие функции Исура–Вайзе, для вычисления которой необходимо привлечение непертurbативных подходов. В подразделе 4.2 из формфакторов полулептонных распадов тяжелых мезонов, полученных в нашем подходе, рассчитывается функция Исура–Вайзе. Обсуждается аналитическая формула для этой функции. В подразделе 4.3 производится получение явного выражения для наклона функции Исура–Вайзе при нулевом переданном импульсе. Далее получено модельно независимое ограничение на наклон этой функции. Верхняя и нижняя границы для этой величины, вычисленные в нашей работе:

$$0.93 \leq \rho^2 \leq 1.38,$$

хорошо согласованы с последними экспериментальными данными для наклона, полученными коллаборациями на ускорителе LEP и коллаборацией CLEO.

Расчет с различными волновыми функциями, выполненный в нашей работе, подтверждает правильность полученной оценки. Наши ограничения хорошо согласованы с расчетами на решете и с рядом расчетов в правилах сумм.

Подраздел 4.4 посвящен расчету констант лептонного распада мезонов, содержащих один тяжелый кварк ($B^-, B_{s}^-, D^-, D_{s}^-$–мезонов). Для расчетов используется "размазанный" оператор взаимодействия с кулоновским поведением на малых расстояниях и линейным запиранием. Процедура размазывания содержит один параметр. Волновая функция рассчитывается вариационным методом. Показано, что теоретическая неопределенность в расчетах, связанная с неопределенностью в массах
тяжелых кварков, не превышает 13%. Значения рассчитанных констант хорошо согласованы с расчетами на решетках и с имеющимися экспериментальными данными. Получено, что релятивистские поправки являются большими и достигают для D-мезонов 60% и для B-мезонов 40%. Для оценки поправок по обратной массе тяжелого кварка константы рассчитаны в главном члене по $1/m_Q$. Для B-мезонов эти поправки являются незначительными, а для D- и D_s-мезонов достигают 30% и 20% соответственно. Выведены модельно независимые ограничения на отношение релятивистского и нерелятивистского значений констант лептонного распада.

В пятой главе производится расчет электромагнитной структуры ρ-мезона. В подразделе 5.1 в рамках развитого в диссертации формализма производится построение оператора электромагнитного тока для составной системы с полным моментом количества движения $J = 1$. В отличие от вычислений, например, во фронтовой форме РГД вычисление электромагнитных формфакторов в нашем подходе является неоднозначным, т.е. формфакторы, полученные из матричных, отличающихся значениями проекций полного момента в начальном и конечном состояниях получаются одинаковыми.

В подразделе 5.2 получены электромагнитные формфакторы ρ-мезона в модифицированном импульсном приближении. Сформулирован простой рецепт получения соответствующих формул. Показано, что релятивистское рассмотрение системы приводит к следующему эффекту — появлению отличного от нуля квадрупольного формфактора в S-волновом ρ-мезоне.

В подразделе 5.3 приводятся результаты численных расчетов электромагнитных формфакторов и статических моментов ρ-мезона. Получено, что релятивистский расчет дает ненулевой квадрупольный момент S-волнового ρ-мезона. Выражение для квадрупольного момента имеет следующий вид:

$$Q_\rho = -\frac{1}{4M} \int_{2M}^{\infty} ds \frac{\varphi^2(s)}{\sqrt{s(s-4M^2)}} \left[\frac{M}{\sqrt{s+2M}} + \kappa_u + \kappa_d \right] L(s),$$

$$L(s) = \frac{2M^2}{\sqrt{s-4M^2}(\sqrt{s+2M})} \left[\frac{1}{2M^2\sqrt{s(s-4M^2)}} + \cdots \right].$$

(11)
где \(\kappa_u, \kappa_d, M \) – аномальные магнитные моменты и масса конституентных кварков, \(\varphi(s) \) – волновая функция кварков в \(\rho \) – мезоне.

Показано также, что релятивистские эффекты, в частности, эффект вигнеровского вращения спинов дают большие вклады в магнитный момент \(\rho \)-мезона.

Расчеты приводят к выводу, что релятивистские поправки к электромагнитным формфакторам при ненулевых переданных импульсах являются значительными, а именно, сильно замедляют спадание формфакторов по сравнению с нерелятивизмом. Например, при расчетах с волновыми функциями основного состояния гармонического осциллятора нерелятивистские расчеты дают гауссовское спадание с ростом переданного импульса, а релятивистские расчеты с этими же волновыми функциями в нашем подходе дают степенное спадание.

В шестой главе производится релятивистский расчет упругого неполяризационного и поляризационного электрон–дейтронного рассеяния. В подразделе 6.1 приведены краткая характеристика существующих теоретических подходов к описанию этой простейшей нуклонной системы и проблем возникающих при теоретическом описании дейтрона, а также перечислены последние экспериментальные результаты по исследованию электромагнитной структуры дейтрона. Подраздел 6.2 содержит основные формулы, описывающие упругое электрон–дейтронное рассеяние, а также релятивистские и нерелятивистские формулы для электромагнитных формфакторов дейтрона, полученные в формализме, развитом в диссертации. В подразделе 6.3 приведены результаты численных расчетов статистических моментов дейтрона. Показано, что величины релятивистских поправок к СКР дейтрона являются малыми, а поправки к квадрупольному и магнитному моментам дейтрона сравнимы по величине с экспериментальными погрешностями измерений. Подраздел 6.4 посвящен вычислению дейтронных формфакторов, а также функций \(A(Q^2) \) и \(B(Q^2) \), через которые выражается сечение упругого электрон–дейтронного рассеяния. Произведена оценка релятивистских поправок к этим функциям при различных переданных импульсах. Релятивистские поправки к функциям \(A(Q^2) \) и \(B(Q^2) \) рас-
тут с ростом переданных импульсов и достигают для функции $A(Q^2)$ 80% при $Q^2 \approx 8$ ГэВ2. Показано, что функции $A(Q^2)$ и $B(Q^2)$ сильно зависят как от выбора модельных волновых функций, так и от выбора фита для нуклонных формфакторов. Сделан вывод, что даже последние довольно точные измерения этих функций не дают возможности выбора между различными моделями нуклон–нуклонного взаимодействия в дейтроне и между различными нуклонными фитами. Надежду на возможность такого выбора дают проведенные в последние годы поляризационные измерения в электрон–дейтроном рассеянии, которые позволяют оценить более точные детали внутренней структуры дейтрона. В подразделе 6.5 производится расчет компоненты $T_{20}(Q^2)$ тензора поляризации дейтрона в упругом электрон–дейтронном рассеянии. Показано, что $T_{20}(Q^2)$ слабо зависит от выбора нуклонной подгонки и достаточно сильно зависит от выбора дейтронной волновой функции. Это позволяет выбрать из рассматриваемых в работе моделей NN–взаимодействия наиболее адекватную, такой, в частности, является модель В.М.Музафарова и В.Е.Троицкого. Релятивистские поправки к этой величине являются незначительными при $Q^2 \leq 2$ ГэВ2. Однако при больших значениях переданных импульсов поправки становятся большими. В этом же подразделе проводится сравнение результатов расчетов с экспериментальными значениями для зарядового и квадрупольного формфакторов дейтрона. В подразделе 6.6 обсуждается роль обменных мезонных токов при расчетах электромагнитной структуры дейтрона в мгновенной форме релятивистской динамики. Произведена оценка вклада обменных $\rho\pi\gamma$ – токов в функцию $B(Q^2)$, показано, что этот вклад значительно изменяет положение первого дифракционного минимума магнитного формфактора дейтрона. В подразделе 6.7 производится расчет зарядового формфактора нейтрона из зарядового формфактора дейтрона. Зарядовый формфактор нейтрона является наименее изученным среди всех нуклонных формфакторов. Информация о зарядовом нейтронном формфакторе как правило извлекается косвенно из экспериментальных данных о электромагнитной структуре легких ядер – ядра атома гелия или дейтерия. В настоящей работе извлечение нейтронного формфактора производится в модели NN–взаимодействия В.М.Музафарова и В.Е.Троицкого, которая хорошо описывает компоненту $T_{20}(Q^2)$ тензора поляризации дейтрона. Вклад обменных мезон-
ных токов оценивается на основании теорем Зигерта. Получено двенадцать новых точек нейтронного формфактора при $Q^2 \leq 1.717 \text{ ГэВ}^2$. Получена новая аналитическая формула для фитирования существующих данных о нейтронном формфакторе, включая полученные в диссертации:

$$G_E^n(Q^2) = -\mu_n \frac{a \tau}{1 + b \tau} \left(1 + \frac{Q^2}{0.71}\right)^{-2}, \quad \tau = \frac{Q^2}{4M^2}, \quad (12)$$

где $a = 0.942$, $b = 4.65$, $\mu_n = -1.91304270(5)$ — магнитный момент нейтрона, M — нуклонная масса, Q^2 измеряется в ГэВ^2.

В заключении сформулированы основные новые результаты, полученные в диссертации. Они сводятся к следующим:

1. В рамках мгновенной формы релятивистской гамильтоновой динамики построен формализм для описания электрослабой структуры составных систем. Подход основан на процедуре построения матричных элементов электрослабых токов с учетом условий релятивистской ковариантности и законов сохранения и позволяет, в частности, сформулировать импульсное приближение без нарушения лоренц-ковариантности и законов сохранения (модифицированное импульсное приближение).

2. В рамках подхода достигнуто описание электрослабых свойств составных кварк–анти кварковых систем — мезонов. В диссертации получены релятивистские интегральные представления для электромагнитных формфакторов скалярных и векторных мезонов (ρ-мезон), а также для формфакторов полулетонных распадов и констант летонных распадов скалярных мезонов. Получено, что релятивистские эффекты являются определяющими, обеспечивая согласие теории и эксперимента.

3. Показано, что асимптотика зарядового формфактора пиона при больших передачах импульса определяется релятивистскими эффектами, в частности, вигнеровским вращением спинов, и не зависит от
вида волновых функций конституентных кварков в мезоне. Сравнение вычисленной асимптиотики с предсказаниями кваркового счета и КХД позволяет получить функциональный вид для формфактора конституентного кварка.

4. В диссертации впервые предложена процедура оценки параметров составной кварковой модели — масс и аномальных магнитных моментов конституентных кварков — из экспериментов по измерению зарядового формфактора пионы при средних и больших переданных импульсах. Полученные ограничения на параметры слабо зависят от выбора модельных волновых функций кварков в пионе.

5. Предложенный в диссертации формализм дает адекватное описание электромагнитных свойств простейшей нуклонной связанной системы — дейтрона. Показано, что релятивистские поправки к функции $A(Q^2)$ упругого электрон-дейтронного рассеяния достигают 80% при $Q^2 \simeq 8\text{ ГэВ}^2$ и значительно улучшают согласие с экспериментом. Получено, что расчет в развитом формализме компоненты $T_{20}(Q^2)$ тензора поляризации дейтрона позволяет сформулировать критерии выбора модельных волновых функций дейтрона.

6. В диссертации впервые выполнено выделение зарядового формфактора нейтрона из зарядового формфактора дейтрона. Получено двенадцать новых точек для зарядового формфактора нейтрона в области преданных импульсов до $\simeq 1.717\text{ ГэВ}^2$.

Публикации

Основные результаты диссертации опубликованы в следующих работах:

Формат 60×84/16. Бумага офсетная. Печать оперативная.
Объем 1,75 п.л. Тираж 100 экз. Заказ N1042
443011, г.Самара, ул. Академика Павлова, 1
Отпечатано УОП СамГУ

28