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Investigation of quadrupole deformation of nucleus and its surface
dynamic vibrations
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Abstract. The new complete database – Chart of nuclear quadrupole deformations – was developed using various
sources of related information. Using this Chart the system comparative analysis of quadrupole deformation parame-
ters β2 obtained by two different methods was carried out for many nuclei. The clear systematical disagreements of
β2 parameters obtained from nuclear quadrupole moments Q (“Q-type” data) and from reduced transition probability
B(E2) ↑ for 0+ → 2+1 transitions (“B-type” data) were revealed. It was found out that all nuclides investigated are
clearly separated into two groups. For all isotopes of “group 1” nuclei good agreement was observed for data of both
types. For all isotopes of “group 2” nuclei “B-type” β2 data values are systematically (in many cases significantly)
larger than “Q-type” ones. In cases of only few exceptions disagreement for some isotopes are combined with
agreements for others. It was shown that two types data difference could be explained in the frame of assumption about
the not negligible role of dynamic vibrations of nucleus surface, by other words, about dependence of quadrupole
deformation parameter β2 values on surface vibrations of nucleus in ground state. From this point of view “Q-type”
β2 values do not take into account nucleus surface vibration, but “B-type” β2 values do that. Therefore “B-type” data
reflect not only static nuclear deformation (deviation of nucleus shape from spherical), but dynamic deformation also.

1 Introduction

Atomic nucleus matter space distribution is one of the most
important fundamental physical features to which nuclear
physics has a first priority interest. At last time amount of
experimental researches devoted to studying nuclei shapes is
increasing permanently, new experimental methods are deve-
loped, large volume nuclear structure parameters compilations
are created. All those give to one possibility to obtain new
data on various, first of all, quadrupole nuclear deformations.

Among the well-known systematical collections of data
concerning quadrupole deformations, two could be pointed
out as more complete and carefully obtained. The first one [1]
is the experimental electrical quadrupole moment Q data
collection including more than 1300 data for about 450
nuclides, continuing some previous collections [2,3]. The
second one [4] is the collection of reduced transition prob-
ability B(E2) ↑ values for 0+ → 2+1 transitions (about 2000
B(E2) ↑ values from ∼ 200 publications for ∼1500 nuclides)
also continuing and adding previous collections.

At the Russia MSU SINP Centre for Photonuclear
Experiments Data (CDFE) large amount of the quadrupole
deformation parameter β2 data from both collections
mentioned have been used for development of the new
database [5] – Chart of nuclear quadrupole deformations
(http://cdfe.sinp.msu.ru/services/nsr/defchart/defmain.html).

The database is realized as a system analogue to well-
known Chart of nuclides (various properties of nuclides
are sorted in Z and N coordinates). The colours of the
Chart individual nuclide elements give tthe possibility for a
comfortable overview of nuclei shapes and of finding nuclei
having definite (speric, prolate or oblate) shape. Similar
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to colours using for geographical maps preparation, brown
colour was used for “hills” (β2 > 0), blue for “sears” (β2 < 0)
and green for “plains” (unknown β2 sign). Intensity of colour
corresponds to the parameter absolute value.

Using new Chart the systematical analysis of β2
parameters from various sources was carried out for many
nuclei and at the first time revealed clear and in many cases
significant systematical disagreements between quadrupole
deformation parameters obtained using the two main methods
mentioned.

Such complete databases are powerful tools for system
analysis and overview of unknown agreements or, vice
versa, disagreements of data obtained by various ways or
for founding out new nuclear objects and investigation
their new features. As an example of such kind research
investigation of consistency between total and partial
photonuclear reaction cross sections studied using different
methods at various laboratories was carried out [6] at the
MSU SINP CDFE using complete nuclear reaction relational
database (http://cdfe.sinp.msu.ru/exfor/index.php). Several
new (not classic traditional) magic nuclei have been found
out and many their features investigated [7] using the
possibilities of another complete nuclear structure database
(http://cdfe.sinp.msu.ru/services/ensdfr.html).

2 Two main methods for nucleus quadrupole
deformation parameter obtaining

2.1 Quadrupole deformation parameter δ from
nucleus quadrupole moment

As is well known (for example, see [8]) the intrinsic quad-
rupole moment of evenly charged ellipsoid can be described
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by the equation
Q0 = 2/5 Z(b2 − a2), (1)

where a and b are the small and large ellipsoid axises. Since
quadrupole deformation parameter δ (degree of nucleus shape
deviation from sphere) can be written as

δ = 0.3(b2 − a2)/2〈r〉2, (2)

where
〈r2〉 = (b2 + 2a2)/5, (3)

equation (1) would be written as follows

Q0 = 4/3 Z〈r2〉δ. (4)

Hence using experimental quadrupole moment Q0 values [1]
the nucleus quadrupole deformation parameter values δ could
be calculated by the formula

δ = 0.75 Q0/(Z〈r2〉). (5)

Intrinsic moment Q0 values were recalculated [9] from static
electric quadrupole moment Q values measured in the labora-
tory system. It was supposed that near spherical nucleus shape
vibrations amplitude is small in comparison to nucleus equi-
librium deformation and, therefore, the following equation can
be used

Q = Q0(3K2 − I(I + 1))/((I + 1)(2I + 3)), (6)

where I is the spin of the state – the member of rotational band
based on nucleus ground state, K is I’s projection on symmetry
axis.

Value of 〈r2〉 was evaluated using the following expres-
sions

〈r2〉 = 0.6 R2
0(1 + 10/3(πa0/R0)2)/(1 + (πa0/R0)2) (A ≤ 100),

(7)

〈r2〉 = 0.6 (1.2A1/3)2(A > 100), (8)

which takes into account effects of light nuclei surface diffu-
sion properties.

Parameters of radial Woods-Saxon potential form-factor
(R0 = 1.07 A1/3 fm and a0 = 0.55 fm) were obtained from the
data on fast electrons scattering.

2.2 Quadrupole deformation parameter β2 from
reduced transition probability B(E2)↑ for 0+ → 2+1
transition

In [4] quadrupole deformation parameter β2 was obtained
using the following equation

β2 = (4π/3 ZR2
0) [B(E2; 0+ → 2+1 )/e2]1/2, (9)

where B(E2; 0+ → 2+1 ) is reduced probability for E2- transi-
tion 0+ → 2+1 and R2

0 = (1.2A1/3 cm)2.
The values under discussion δ (5) and β2 (9) are connected

(for example, see [9]) as δ ≈ 0.95β2 and therefore further for
simplicity the only symbol β2 will be used.

Fig. 1. Comparison of |β2| values obtained from B(E2) ↑ data (blue
triangles, solid line) and from Q data (red squares, dotted line) for W
(“group 1”).

Fig. 2. Comparison of |β2| values obtained from B(E2) ↑ data and
from Q data (designations are the same as in fig. 1) for Sn (“group
2”). 124Sn case (|β2|Q = 0) is indicated specially.

3 Comparison of data on quadrupole deformation
parameter data obtained using two methods

All |β2| values, obtained using two different methods described
above (“Q-type” data from experimental quadrupole moments
Q and “B-type” data from reduced transition probabilities
B(E2) ↑) were investigated for many nuclei. It was found out
that all nuclei studied are clearly separated into two groups
(“1”and “2”):

– “group 1”: for all isotopes of nuclei from “group 1” (Ti, Cr,
Zr, Nd, Sm, Gd, Dy, Er, W, Os, Ra) “B-type” and “Q-type”
data are very close to each other (small differences are of
order of statistical uncertainties); the typical example for
W isotopes is presented in figure 1.

– “group 2”: for all isotopes of nuclei from “group 2” (C, Si,
Ar, Ca, Fe, Ni, Zn, Ge, Se, Kr, Sr, Mo, Ru, Pd, Cd, Sn,
Te, Ba, Yb, Hf, Pt, Pb) “B-type” data have values clearly
larger than those for “Q-type” data; the typical example of
comparison of both type data for Sn isotopes is presented
in figure 2.

There are only few exceptions from the clear systematic
obtained. It was founded out that in the cases of nuclei Mg,
Xe, Hg and U phenomenon described is dependent on number
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of neutrons. For several isotopes “’B-type” data have values
larger than those for “Q-type” data, but for others – vice versa,
“Q-type” data have values larger than those for “B-type” data.

4 Quadrupole deformation of nucleus and its
surface vibration

The difference between absolute value |β2| data derived from
Q and B(E2) ↑ values founded out can be explained in
the fame of assumption about the connection of quadrupole
deformation parameter with vibration of surface of nucleus
in ground state. That is based on assumption that “Q-type”
data do not take into account such nucleus surface vibrations,
but “B-type” data do that. In other words from that point of
view “B-type” data are affected not only by static nucleus
deformation depended on its shape, but also by dynamic
nucleus deformation that came from its surface vibration.

4.1 Rotating nucleus model

In the frame of rotating nucleus model it is supposed that rigid
nucleus has a static deformation and its excitation is the result
of nucleus rotating. It was shown [8] that value of reduced
probability B(E2) ↑ of transition between any states of rotating
band can be expressed as

B(E2; KJ1 → KJ2) = (5/16π)e2Q2
0〈J1K20|J2K〉2, (10)

where J is state spin, K is spin projection to the axis of symme-
try, Q0 is intrinsic nucleus quadrupole moment, 〈J1K20|J2K〉
is vector summation coefficient. Partially, for E2 transition
0+ → 2+1 it looks as

B(E2; 0+ → 2+) = ((3/4π)eZR2
0)2(β2)2 (11)

and completely corresponds to the expression (9).

4.2 Vibrating nucleus model

Because nucleus is not absolutely rigid (tough) object, its
surface vibrates and amplitude of such vibrations depends on
both excitation state energy and nucleus rigidity (toughness).
It is obvious that if such vibrations occur the nucleus shape
is changing. It is important that such vibrations can occur
not only in excited states but in ground state also. Changing
of nucleus shape (shape vibrations) occurs relative some
“equilibrium” shape that can be partially spherical as in case of
magic nuclei. It is important to underline that in such enough
simple cases though in average nucleus shape is sphere, at
different times initial photons are interacted with nuclei of
different shapes. It is important that independently of the sign
of deformation – for prolate or oblate nucleus – at the same
absolute deformation parameter value interaction probability
is the same. Both processes contributions are summed and
therefore nucleus that is spherical in average can have not
zero probability for transition 0+ → 2+1 and hence not zero
deformation parameter.

For simplicity: in an harmonic oscillator with spherical
equilibrium shape, the average amplitude of nucleus shape
difference from spherical one in ground state is

〈0|α2µ|0〉 = 0, (12)

where ανµ are collective variables describing nucleus surface
motion, and ν = 2 for harmonic oscillator (that is true [9] for
N-th excited vibration state).

Squared deformation parameter β2
0, characterized vibrating

nucleus is defined [8] as average of the sum Σ |α2µ|2

β2
0 =

�

2B2ω2
(5 + 2N) , (13)

where B2 is mass coefficient, ω2 is vibration frequency and N
is phonon number.

It must be underlined that for nucleus ground state (N = 0)

β2
0 =

5�
2B2ω2

� 0(!). (14)

This phenomenon could have very simple explanation: dy-
namic deformation of nucleus in ground state occurs ((9),
(11)) because not deviation of nucleus shape from “equilib-
rium” is averaged, but deviation squared. It must be underlined
that both formulae ((9) and (11)) though being very similar
(near identical) were obtained in quite different models and
describe different physical processes taking place in nucleus
at of 2+ state excitation. The theory that could simultane-
ously describe both kind motions (vibration and rotation) of
nucleus is very complicated and really in essence has not been
developed. But at the same time it must be pointed out that in
vibration model probability B(E2) ↑ of transition 0+ → 2+1 is
connected [8] with introduced squared deviation β2

0 of nucleus
shape from equilibrium as

B(E2; n2 = 0→ n2 = 1) = ((3/4π) eZR2
0)2(β0)2. (15)

This expression textually (letter-to-letter) coincides to the
expression (11). That gives to one possibility to interpret
introduced β0 as “deformation” also but namely “dynamic
deformation” – not traditional “static” one.

It is obvious that the only simplest case could be analyzed.
In reality vibrations occur relative not-spherical equilibrium
shape and therefore much more complicated interaction of
two (or more) types of moving must take place. As a result
relatively simple and strict solution can not be obtained.
But it is obvious nevertheless that effective interaction of
two degrees of freedom will lead to effective increasing of
deformation.

5 Nucleus dynamic deformation

The physical explanation of the phenomenon founded out can
be the following. For “group 1” (“B-type” data are near to
“Q-type” data) 2+1 - level excitation is pure rotational: vibration
of nucleus in ground state (“zero vibration”) is weak and the
nucleus shape can be treated as “static”. For “group 2” (“B-
type” data are larger than “Q-type” ones) “zero vibrations”
play important role. The superposition of static and dynamic
deformations leads to effective increasing of nucleus defor-
mation. As a matter of fact in this case the rotational model
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Table 1. Parameters characterised nucleus surface vibrations (“C” is
rigidity parameter, “a” is vibration amplitude).

Nucl —β2|B β2|Q C2, C2β, C2γ, aβ aγ
16O 0.36 ≈0.0 132 – – – –
18O 0.36 0.09 39 – – – –
24Mg 0.61 0.44 – 82 36 0.20 0.24
28Si 0.41 0.35 – 84 185 0.17 0.14
30Si 0.32 0.09 56 – – – –
40Ca 0.12 ≈0.0 655 – – – –
42Ca 0.25 0.21 – 37 63 0.16 0.14
124Sn 0.09 ≈0.0 293
144Nd 0.13 ≈0.0 102 – – – –
154Sm 0.34 0.32 – 13 15 0.21 0.20
168Er 0.34 0.34 – 16 7 0.19 0.24
178Hf 0.28 0.27 – 20 19 0.17 0.18
182W 0.25 0.27 – 210 240 0.05 0.05
186Os 0.20 0.20 – 205 107 0.05 0.06

can not be employed. But because the formulae connected
β2 and B(E2) ↑ are formally the same in both rotating (11)
and vibrating (15) nucleus models it can be supposed that the
“B-type” parameter of deformation is reflecting the effective
increasing of nucleus deformation and such nucleus can be
treated as trembled.

Several isotopes (16O, 40Ca, 94Mo, 96Ru, 124Sn (fig. 2),
144Nd and some others) were founded out for which “Q-type”
parameter of deformation |β2|Q ≈ 0, but “B-type” one |β2|B
is large. The vibrating nucleus model in pure version can be
applied for such isotopes and therefore C2, spherical nucleus
surface rigidity parameter, could be calculated (table):

(β2)2
B = 5�/(2B2ω2), �ω2 = E2+1

= �
√

C2/B2. (16)

For some other nuclei with relatively large static deformation
and relatively weak β- and γ-vibrations rotational lines could
be looked through and correspondingly deformed nucleus
rigidity parameters C2β, C2γ and vibration amplitudes aβ, aγ
could be calculated (if correspondent formulae could work in
conditions under discussion):

�ωβ = E0+1
= �

√
C2β/B2, �ωγ = E2+1

= �

√
C2γ/B2 (17)

E2+1
= �2J(J + 1)/(6B2β

2
2)|J=2 = �

2/(B2β
2
2), (18)

a2
β,γ = �/(2B2ωβ,γ). (19)

One can see that isotopes 16O, 40Ca, 124Sn, and 144Nd have
near zero static deformation but clear dynamic one. It is
interesting that isotope 40Ca (double magic spherical nucleus)

is very rigid (C2 is large) but nevertheless its surface vibrates:
clear dynamic deformation. Therefore it could be treated as
“trembling” in ground state. Vice versa, 42Ca is deformed and
soft (both C2 are relatively small) nucleus, but its surface does
not vibrate and therefore its deformation is clear “static”.

So research carried out leads to conclusions that: there are
many nuclei for all isotopes of which both-type β2 data are of
the same value; those nuclei could be spherical or deformed
but their surfaces do not vibrate, there are many nuclei for all
isotopes of which “B-type” β2 data have values larger (in some
cases significantly (factor ∼ 1.5 – 2.0)) than “Q-type” data; the
surfaces of such nuclei in ground states vibrate and therefore
such nuclei have clear dynamic deformation and could be
treated as “trembling”, there are only few nuclei for which
the intermediate situation is observed, there are absolutely no
nuclei for which “Q-type” data are larger than “B-type” ones.
So two types β2 parameter data difference found out could be
explained in the frame of assumption about dynamic surface
vibrations of nucleus in ground state: “B-type” data reflect not
only static nuclear deformation (deviation of nucleus shape
from spherical), but dynamic deformation also.
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